A new approach to the electrostatic pull-in instability of nanocantilever actuators using the ADM-Padé technique
نویسندگان
چکیده
In this paper, theAdomiandecompositionmethod and Padé approximants are integrated to study thedeflection andpull-in instability of nanocantilever electromechanical switches. In a distributed parameter model, intermolecular forces, including Casimir forces, are taken into account considering their range of application. A closed form power series solution based on Adomian polynomials is obtained. The obtained analytic results are compared with numerical solution. The Adomian method is accurate for small deflections, but the results of a pull-in instability study demonstrate that the accuracy of the Adomian solution is not as good for small deflections. Thus, to increase the accuracy of the Adomian solution for the pull-in instability, the Adomian power series is converted to Padé approximants. The results of the present method are compared with the numerical results as well as those of the Adomian decompositionmethod and othermethods reported in the literature. The results obtained using the ADM–Padé are remarkably accurate compared with the numerical results. The proposed technique can be easily extended to solve a wide range of instability problems. Finally, the minimum initial gap and the detachment length of the actuator that does not stick to the substrate due to the intermolecular attractions, which is an important parameter for the pull-in instability of a nanocantilever actuator, are calculated using Adomian–Padé approximants. © 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Dynamic Pull-in Instability of Nano-Actuators in the Presence of a Dielectric Layer
The natural frequency and pull-in instability of clamped-clamped nano-actuators in the presence of a dielectric layer are analyzed. The influence of the presence of Casimir force, electrostatic force, fringing field effect, axial force, stretching effects and the size effect are taken into account. The governing equation of the dynamic response of the actuator is transformed in a non-dimensiona...
متن کاملBuckling Analysis of Cantilever Nanoactuators Immersed in an Electrolyte: A Close Form Solution Using Duan-Rach Modified Adomian Decomposition Method
A new modified Adomian Decomposition Method (ADM) was utilized to obtain an analytical solution for the buckling of the nanocantilever actuators immersed in liquid electrolytes. The nanoactuators in electrolytes are subject to different nonlinear forces including ionic concentration, van der Waals, external voltage and electrochemical forces. The Duan–Rach modified Adomian decomposition method ...
متن کاملStability Analysis in Parametrically Excited Electrostatic Torsional Micro-actuators
This paper addresses the static and dynamic stabilities of a parametrically excited torsional micro-actuator. The system is composed of a rectangular micro-mirror symmetrically suspended between two electrodes and acted upon by a steady (dc ) while simultaneously superimposed to an (ac ) voltage. First, the stability of the system subjected to a quasi-statically applied (dc ) voltage is investi...
متن کاملThe effect of small scale and intermolecular forces on the nonlinear Pull-in instability behavior of nano-switches using differential quadrature method
Using differential quadrature method (DQM), this study investigated pull-in instability of beam-type nano-switches under the effects of small-scale and intermolecular forces including the van der Waals (vdW) and the Casimir forces. In these nano-switches, electrostatic forces served as the driving force, and von-Karman type nonlinear strain was used to examine nonlinear geometric effects. To de...
متن کاملElectrostatic Micro-actuator Structural Analysis Using Genetic Algorithm
This study is devoted to providing predictions of the pull-in parameters (pull-in voltage and pull-in displacement) of electro-statically actuated micro-beams based on a continuous model using Genetic Algorithm (GA) technique. A phenomenon in which the actuated electrode comes in direct contact with the fixed electrode due to the electrostatic force is called pull-in instability. Accurate deter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 64 شماره
صفحات -
تاریخ انتشار 2012